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A method is presented to calculate the spin relaxation times T1, T2 due to a non-uniform magnetic field,
and the linear-in-electric-field precession frequency shift dxE when an electric field is present, in the dif-
fusion approximation for spins confined to a rectangular cell. It is found that the rectangular cell geom-
etry admits of a general result for T1, T2, and dxE in terms of the spatial cosine-transform components of
the magnetic field. The result is applied to the case of a permanently-magnetized dipole impurity near
the cell.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction 1 ¼ c2 kxxðx0Þ þ kyyðx0Þ
� �

; ð1Þ
An experiment to measure the neutron electric dipole moment
(nEDM), to be installed at the FnPB beamline at Oak Ridge National
Laboratory, will utilize a helium-3 comagnetometer in the central,
superfluid-helium-filled measurement cell [1,2]. A non-zero EDM
would manifest as a difference in the Larmor precession frequency
when electric and magnetic fields are aligned versus anti-aligned.
In the nEDM measurement, the helium-3, which also acts as neu-
tron spin analyzer, will be used to correct for drifts in the magnetic
field. The helium-3 polarization must remain high over the entire
measurement period, �1000 s, as the helium atoms precess in
the holding field and diffuse within a rectangular cell. Also, as there
is a strong electric field~E applied across the cell, a subtle effect, in
which the interplay of the motional ~v �~E field with gradients in
the static magnetic field cause the precession frequency to shift
linearly with ~E [3] and thereby falsely signal an EDM, must be
well-understood or shown to be negligible. Design optimization
of the experimental apparatus includes calculating the helium-3
spin relaxation times T1 (longitudinal), T2 (dephasing), and lin-
ear-in-electric-field frequency shift dxE due to given magnetic field
non-uniformities.

In this article, a method is shown to calculate these quantities in
the diffusion approximation in a rectangular cell and for an arbi-
trary magnetic field. The starting point for the relaxation times is
the Redfield theory of spin relaxation [4]. In second order perturba-
tion theory these can be written, for a holding field in the z direc-
tion, as [5]
ll rights reserved.
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T1

1
T2
¼ 1

2T1
þ c2kzzð0Þ; ð2Þ

where the spectral density is given in terms of magnetic field per-
turbations hi(t),

kijðxÞ ¼
1
2

Z 1

�1
hhiðtÞhjðt þ sÞi cos xsds: ð3Þ

Here, the total field in each direction i is Hi(t) = hHi(t)i + hi(t), such
that average perturbation hhi(t)i = 0, and x0 = chHz(t)i is the average
spin precession frequency.

McGregor [6] calculated the ensemble average correlation of
the field perturbations seen by a diffusing particle in the case of
a time-independent, uniform gradient of Hz in the x-direction,

hhzðtÞhzðt þ sÞi ¼ @Hz

@x

� �2

hxðtÞxðt þ sÞi; ð4Þ

resulting in an analytic expression for T2 in a rectangular cell,

1
T2
¼ 1

2T1
þ c2L4

120D
@Hz

@x

� �2

: ð5Þ

We relax the requirement of uniform gradient and find, in the
case of a rectangular prism cell, that T1 and T2 can be written in
terms of the components of the 3D cosine transform of hqð~rÞ over
the cell volume. The same technique is applied to dressed spins
[7], with uniform holding field and non-uniform dressing field,
by mapping non-uniformities in the dressing field to equivalent
non-uniformities in the holding field. In Section 3, a variation of
the technique is used for the linear-in-electric-field frequency
shift. Finally, in Section 4, the method is applied to compute the
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relaxation times and linear-in-electric-field frequency shift due to
sources of magnetic field non-uniformities near the cell: magnetic
dipole impurities in given orientations and positions, and an infi-
nitely-long superconducting rod.

The application of Redfield’s theory in this work, as in McGre-
gor’s [6], is valid when the particle motions are such that the per-
turbing field has a short correlation time compared to the
relaxation time (see, e.g., Ref. [5], Section 5.12); in this motional
narrowing regime a given spin explores much of the cell before sig-
nificantly dephasing from the average, and the relaxation time is
longer than it would be if the spins were stationary. Also, use of
the diffusion equation requires the scattering mean free path to
be much less than the size of the cell. Cates, Schaefer, and Happer
cover a similar region of validity in their work on spin relaxation
due to field inhomogeneities in gaseous samples [8], and it has re-
cently been shown [9] that their approach, based on second-order
perturbation theory of the Torrey equation [10] operated on a den-
sity matrix, contains the same physics as approaches based on the
Redfield theory.

Diffusive relaxation in restricted geometries has been treated by
many authors, with the effectively one-dimensional (parallel-plate
or slab) geometry most relevant to the present work. Most of the
previous articles describe spin-echo studies of diffusion, and some
go beyond constant field gradient (e.g., Refs. [11,12]); the recent re-
view by Grebenkov [13] gives an historical overview and modern
perspective of NMR studies of diffusion. As formulae from spin-
echo studies do not describe the free-induction decay times we
seek, the extension of McGregor’s work [6] detailed below is
offered.

The linear-in-electric-field frequency shift in stored particles,
the other main topic of this article, is an important systematic ef-
fect in the next generation of electric dipole moment experiments
[14]. In Ref. [15], the frequency shift is formulated in terms of the
velocity autocorrelations, and one of the limiting cases discussed is
the diffusion approximation in a rectangular cell with a uniform
magnetic field gradient. We employ a slightly modified approach
to calculate this limit in an arbitrary magnetic field.

2. Correlation functions in the diffusion limit

The correlation function of hi can be expressed as integrals over
the cell volume weighted by the probability density pð~r0; tÞ that the
particle is at~r0 at the initial time t0, and the joint probability den-
sity pð~r; tj~r0; t0Þ that a particle at~r0 at time t0 will be at~r at time t.
Thus, [6]

hhiðt0Þhiðt0 þ sÞi ¼
Z

V
d~r0hið~r0Þpð~r0; t0Þ

Z
V

d~rhið~rÞpð~r; t0

þ sj~r0; t0Þ: ð6Þ

The particle density will be taken as uniform in the cell,
pð~r; tÞ ¼ 1=V . The joint probability is the solution to the diffusion
equation,

@

@t
pð~r; tj~r0; t0Þ ¼ Dr2pð~r; tj~r0; t0Þ; ð7Þ

subject to reflecting boundary conditions at the walls,

rpð~rS; tj~r0; t0Þ � n̂ ¼ 0; ð8Þ

where~rS 2 S and n̂ is normal to the wall. In a rotated coordinate sys-
tem (x0, y0, z0) aligned with the cell walls, the solution for a
Lx � Ly � Lz box with walls at x0 = ±Lx/2, y0 = ±Ly/2 and z0 = ±Lz/2 is

pð~r0; tj~r00; t0Þ ¼ pðx0; tjx00; t0; LxÞpðy0; tjy00; t0; LyÞpðz0; tjz00; t0; LzÞ; ð9Þ

with the 1D solution dependent on the time difference s = t � t0, [6]
pðx0; tjx00; t0; LxÞ ¼
1
Lx
þ 2

Lx

X1
n¼1;3;...

e�n2p2Ds=L2
x sin

npx0

Lx
sin

npx00
Lx

þ 2
Lx

X1
n¼2;4;...

e�n2p2Ds=L2
x cos

npx0

Lx
cos

npx00
Lx

: ð10Þ

It will be convenient to recognize the following:

p x0 � Lx=2; tjx00 � Lx=2; t0; Lx
� �

¼ 1
Lx
þ 2

Lx

X1
n¼1;2;3;...

e�n2p2Ds=L2
x

� cos
npx0

Lx
cos

npx00
Lx

: ð11Þ

Putting Eq. (9) and p ~r00; t0
� �

¼ 1=V into Eq. (6), changing the lim-
its of integration to 0 6 q0i 6 Li for each dimension q0i and using Eq.
(11), we have

giiðsÞ ¼ hhiðt0Þhiðt0 þ sÞi ¼
X1

nx ;ny ;nz¼0

e�p2D n2
x =L2

xþn2
y=L2

yþn2
z =L2

zð Þs

� 1
V

Z
V 0

dx00dy00dz00hi x00 � Lx=2; y00 � Ly=2; z00 � Lz=2
� �

Cnx Cny Cnz

cos
nxpx00

Lx
cos

nypy00
Ly

cos
nzpz00

Lz

� 1
V

Z
V 0

dx0dy0dz0hiðx0 � Lx=2; y0 � Ly=2; z0 � Lz=2ÞCnx Cny Cnz

cos
nxpx0

Lx
cos

nypy0

Ly
cos

nzpz0

Lz
; ð12Þ

in which the factor Cn has been introduced,

Cn ¼
1 if n ¼ 0ffiffiffi

2
p

otherwise:

	
ð13Þ

We identify the 3D cosine transform of hið~r0Þ within Eq. (12),

A~nfhig �
1
V

Z
V 0

dx0dy0dz0hiðx0 � Lx=2; y0 � Ly=2; z0 � Lz=2Þ

� cos
nxpx0

Lx
cos

nypy0

Ly
cos

nzpz0

Lz
; ð14Þ

(where the integral is over the range x0 2 [0,Lx], y0 2 [0,Ly],
z0 2 [0,Lz]), giving finally

giiðsÞ ¼
X1

nx ;ny ;nz¼0

e�s=s~nc C2
nx

C2
ny

C2
nz
A~nfhig

 �2

; ð15Þ

with the characteristic time sc for a given spatial mode defined by

1
s~nc
¼ p2D

n2
x

L2
x

þ
n2

y

L2
y

þ n2
z

L2
z

 !
: ð16Þ

Putting this expression into Eq. (3) and performing the integral over
s gives

kiiðxÞ ¼
X1

nx ;ny ;nz¼0

C2
nx

C2
ny

C2
nz

s~nc
1þx2ðs~nc Þ

2 A
~nfhig


 �2
; ð17Þ

Substitution into Eqs. (1) and (2) results in complete expres-
sions for the longitudinal and transverse relaxation times.

2.1. Extension to dressed spins with non-uniform dressing field

An RF magnetic field with amplitude B1 applied transverse to
the holding field B0 modifies the effective precession frequency
of a particle. In terms of dimensionless dressing parameters

X ¼ cB1

xRF
; Y ¼ cB0

xRF
; ð18Þ

in the limit Y� 1 the effective gyromagnetic ratio becomes [7]
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ceff ¼ cJ0ðXÞ: ð19Þ

Thus for a dressing field with spatially varying amplitude
B1ð~rÞ ¼ hB1i þ dB1ð~rÞ, the equivalent variation deB0 in the holding
field B0 is given by [1]

ceffd
eB0 $ dceff B0 ¼ B0

@ceff

@X
dX ¼ B0cJ1ðXÞdX; ð20Þ

The expressions from the previous sections can be used to cal-
culate T2 for the dressed spin with a non-uniform dressing field
by setting

c! ceff ; ð21Þ
x0 ! ceff B0; ð22Þ

hzð~rÞ ! Y
J1ðXÞ
J0ðXÞ

dB1ð~rÞ þ dB0ð~rÞ; ð23Þ

where any variation dB0 in the holding field itself has been included
in hz.

3. Linear electric field frequency shift

A spin moving though an electric field experiences a motional
magnetic field that may, in conjunction with gradients of the mag-
netic field, produce a shift in the precession frequency dependent
on the electric field direction and magnitude [3]. Of particular con-
cern in searches for electric dipole moments are effects that are lin-
early proportional to the electric field E. These may mimic effects
expected for an electric dipole moment, thereby creating a ’’false
EDM.’’

As shown by Lamoreaux and Golub [15], the linear-in-electric-
field frequency shift for spins in a confined volume is given by
the expression

dxE ¼ �
1
2

Z t

0
ds cos x0sfhxxðtÞxyðt � sÞi � hxxðt � sÞxyðtÞig;

ð24Þ

where the perturbations can be written more generally as

xxðtÞ ¼ chxðtÞ þ c
E
c

vyðtÞ; xyðtÞ ¼ chyðtÞ � c
E
c

vxðtÞ: ð25Þ

Expanding the expression for dxE and keeping only terms linear
in E results in

dxE ¼
c2E
2c

Z t

0
ds cos x0sfhhyðtÞvyðt � sÞi þ hhxðtÞvxðt � sÞi

� hhyðt � sÞvyðtÞi � hhxðt � sÞvxðtÞig: ð26Þ

The cosine-transform method developed in the present work can be
used to compute Eq. (26) in the diffusion limit for the nEDM cell
geometry. While the expressions,

yðtÞ ¼ y0 þ
Z t

0
vyðt0Þdt0; yðt � sÞ ¼ y0 þ

Z t�s

0
vyðt0Þdt0; ð27Þ

were used in Ref. [15] to eliminate y in favor of an expression with
vy, here we remove the velocity components from the correlation
functions and use instead the Fundmental Theorem of Calculus
and the above expression for y(t � s). The correlation functions
can then be written

hhyðtÞvyðt � sÞi ¼ � @

@s
hhyðtÞyðt � sÞi; ð28Þ

hhyðt � sÞvyðtÞi ¼ hhyðtÞvyðt þ sÞi ¼ @

@s
hhyðtÞyðt þ sÞi: ð29Þ

In the latter expression, averages are assumed to be independent of
the overall time offset t, as appropriate for a stationary problem.
The expressions in Section 2 are modified to give the correlation
function in the diffusion limit in terms of the cosine-transform
components of hyð~rÞ and yð~rÞ,

hhyðtÞyðt � sÞi ¼
X

nx ;ny ;nz

e�s=s~nc C2
nx

C2
ny

C2
nz
A~nfhygA~nfyg; ð30Þ

hhyðtÞvyðt � sÞi ¼
X

nx ;ny ;nz

1
s~nc

e�s=s~nc C2
nx

C2
ny

C2
nz
A~nfhygA~nfyg: ð31Þ

Performing the integral in Eq. (26), we haveZ 1

0
ds cos x0shhyðtÞvyðt � sÞi ¼

X
nx ;ny ;nz

1

1þ ðx0s~nc Þ
2 C2

nx
C2

ny
C2

nz

�A~nfhygA~nfyg; ð32Þ

leading to an expression for the frequency shift,

dxE ¼
c2E

c

X
nx ;ny ;nz

1

1þ ðx0s~nc Þ
2 C2

nx
C2

ny
C2

nz
A~nfhygA~nfygþA~nfhxgA~nfxg
h i

:

ð33Þ

The summation can be reduced by computing the cosine transform
components of xð~rÞ and yð~rÞ analytically,

A~nfxg ¼
� 2Lx

n2
x p2 if nx ¼ 1;3; . . . ; ny ¼ nz ¼ 0

0 otherwise:

(
ð34Þ

The result for the frequency shift in the diffusion approximation is

dxE ¼
4c2E

c

X
ny¼1;3;...

Ly

n2
yp2

Að0;ny ;0Þfhyg

1þ x0s
ð0;ny ;0Þ
c


 �2

264
þ

X
nx¼1;3;...

Lx

n2
xp2

Aðnx ;0;0Þfhxg

1þ x0sðnx ;0;0Þ
c


 �2

375; ð35Þ

we are left with one-dimensional cosine transforms of the field per-
turbation in x and y. The false EDM equivalent to this linear-in-elec-
tric-field shift is

dv�E ¼
2�h
E

dxE: ð36Þ
4. Example applications

The bulk of the computational effort required for practical
application of the present technique is in finding the cosine trans-
form amplitudes A~n of the field non-uniformities. The form of Eq.
(14) is amenable to numerical computation with Fast Fourier
Transform software libraries. The examples below use the multidi-
mensional discrete cosine transform (DCT) feature of the freely-
available software library FFTW3 [16]. Input to the DCT for each
field component is an array of field perturbations hqð~rÞ sampled
over the cell volume at Nx � Ny � Nz grid points, and the output
is an array of DCT amplitudes which, after scaling by 1/(8NxNyNz),
correspond to the desired amplitudes A~n. The summations in Eqs.
(17) and (35) are truncated according to the amplitudes available
from the DCT. Accuracy of the result can be checked by increasing
the number of sample points and repeating the computation. Note
that for the linear-in-electric-field frequency shift (false-EDM) re-
sult, each of the two terms in Eq. (35) requires only a one-dimen-
sional cosine transform of the respective field perturbation
component averaged over the other dimensions.
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4.1. Dipole source near the cell

We calculate the effect of a magnetic dipole source, here a
small, permanently-magnetized sphere of radius a, placed near
the cell in an otherwise uniform field. The field perturbation at a
point~r with respect to the center of the sphere is [17]

~Bdð~rÞ ¼ Bs
a
r


 �3 1
2
ð3n̂ � m̂n̂� m̂Þ; j~rjP a; ð37Þ

where Bs is the magnitude of the field on the surface of the sphere at
its poles, m̂ is the unit vector in the direction of the magnetization,
and n̂ is the unit vector along~r.

The cell in this study has dimensions Lx = 10.2 cm, Ly = 50 cm,
Lz = 7.6 cm and contains a dilute mixture of helium-3 in helium-4
at 450 mK, for a helium-3 diffusion constant of D = 428 cm2/s
[18]. The 10-mG, uniform holding field is in the z-direction, and
four different dipole impurity cases are considered all with
Bs = 1 T: Dipole Source A, with diameter 150 lm, location
~rd ¼ ð0;0;5:07Þ cm, orientation m̂ along the z-axis; Dipole Source
B, with diameter 150 lm, location~rd ¼ ð5:00;25:00;5:07Þ cm, ori-
entation m̂ along the z-axis; Dipole Source C, with diameter
175 lm, location ~rd ¼ ð0;0;5:07Þ cm, orientation m̂ along the x-
axis; and Dipole Source D, with diameter 175 lm, location
~rd ¼ ð5:00;25:00;5:07Þ cm, orientation m̂ along the x-axis. The
location ~rd given for each dipole is with respect to an origin at
the center of the cell volume and corresponds to an outside face
of a 1.27-cm-thick cell wall, either at the center of the face (Sources
A and C) or near the corner (Sources B and D). The results for relax-
ation times T1, T2, and false EDM due to the magnetic field nonuni-
formity are shown in Table 1. The calculation was repeated for
several different numbers of grid points used in the discrete cosine
transform over the cell volume, and stability of the results is evi-
dent as the grid is made increasingly fine.

The prediction for T2 due to each dipole source was checked by a
diffusion Monte Carlo simulation. The simulated particles were
treated classically, with constant velocity consistent with the ther-
mal average kinetic energy of helium-3 quasiparticles, and with
the scattering mean free path set consistent with the diffusion con-
stant. At a temperature of 450 mK, this gives a mean free path of
3.54 mm, sufficiently small compared to the cell dimensions that
the diffusion approximation is expected to be valid. Each simulated
particle was started with spin initially aligned with the y-axis
Table 1
Results of the calculation for the different combinations of dipole source location,
orientation, and strength described in the text, and for several discrete cosine
transform grid sizes. The parameters of each dipole source are given in the text.

Case Nx � Ny � Nz T1 (s) T2 (s) dv�E

Dipole Source A 64 � 256 � 32 4467.65 830.59 �5.0622e�27
Dipole Source A 64 � 512 � 32 4467.65 830.59 �5.0622e�27
Dipole Source A 64 � 512 � 64 4444.89 829.15 �5.0784e�27
Dipole Source A 128 � 512 � 64 4444.90 829.16 �5.0824e�27
Dipole Source A 128 � 512 � 128 4439.24 828.80 �5.0865e�27

Dipole Source B 64 � 256 � 32 16967.75 3286.58 �1.5089e�27
Dipole Source B 64 � 512 � 32 16987.42 3286.95 �1.4836e�27
Dipole Source B 64 � 512 � 64 16864.89 3280.61 �1.5207e�27
Dipole Source B 128 � 512 � 64 16878.04 3280.85 �1.5044e�27
Dipole Source B 128 � 512 � 128 16847.56 3279.27 �1.5137e�27

Dipole Source C 64 � 256 � 32 3487.66 993.46 �8.8261e�43
Dipole Source C 64 � 512 � 32 3487.66 993.46 �1.1026e�42
Dipole Source C 64 � 512 � 64 3470.03 990.81 �1.0648e�42
Dipole Source C 128 � 512 � 64 3470.09 990.85 �1.3352e�42
Dipole Source C 128 � 512 � 128 3465.71 990.19 �1.3549e�42

Dipole Source D 64 � 256 � 32 14022.45 642.52 2.0254e�26
Dipole Source D 64 � 512 � 32 14027.46 642.52 2.0274e�26
Dipole Source D 64 � 512 � 64 13947.02 641.22 2.0287e�26
Dipole Source D 128 � 512 � 64 13950.38 641.69 2.0288e�26
Dipole Source D 128 � 512 � 128 13930.38 641.36 2.0292e�26
(transverse to the 10-mG holding field), and the spin orientation
(~Si for particle i) as the particle moved throughout the cell volume
was evolved in the Rotating Frame [5] using a Runge-Kutta method
with adaptive stepsize control [19]. For each dipole source, 2000
helium-3 particles were simulated, and the polarization in the
plane transverse to the holding field was found from the vector
sum of spin directions versus time, PðtÞ ¼

P
i
~Str

i ðtÞ=n
��� ���, where ~Str

i

is the projection of spin i onto the plane transverse to the holding
field. Simulation results are shown in Fig. 1 along with predictions
from the present technique, demonstrating good agreement be-
tween the simulation and theory calculation.

The cosine-transform technique is also applied in turn to Dipole
Sources A through D repositioned successively further away from
the cell in the z-direction. Results are shown in Fig. 2 for the dipole
source located as close as the outside of the 1.27-cm-thick cell
wall. Dipole sources much closer than the outside of the cell wall
are not considered here because the rapidly-falling field very near
the source would not be well-represented by a three-dimensional
DCT over a practical number of grid points. As long as the average
magnetic field perturbation remains small compared to the hold-
ing field, the results may be scaled to other dipole strengths:
T1,2 / (Bsa

3)2 and dv�E / Bsa
3. Dipole Source C, centered above the

cell and oriented in the x-direction, gives zero (within numerical
precision) false EDM because hx is symmetric across x = 0, and hy

is symmetric across y = 0; i.e., there are no odd components in
the cosine transform of these perturbations in their respective
directions.

4.2. Superconducting rod near the cell

As another example, we calculate the effect of a superconduc-
ting rod placed near the cell in an otherwise uniform holding field.
For an infinite-length rod along the y axis and through the origin in
a magnetic field B0 applied along the z axis, the net field around the
rod is [20]

Bq ¼ 1� a2

q2

� �
B0 cos /; ð38Þ

B/ ¼ 1þ a2

q2

� �
B0 sin /; ð39Þ
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Fig. 1. Results for the transverse polarization P(t) versus time from the diffusion
Monte Carlo simulations for T2 due a a dipole source near the cell. The shaded bands
indicate the standard deviation of five curves P(t) for each dipole source found by
subdividing the ensemble of 2000 simulated particles. In order from shortest to
longest T2, the curves are for Dipole Sources D, A, C, and B described in the text. The
smooth black lines are the predicted PðtÞ ¼ expð�t=Tth

2 Þ, where T th
2 for each dipole

source is taken from Table 1.
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transform over the Lx � Ly � Lz = 10.2 � 50 � 7.6 cm3 cell is Nx � Ny � Nz = 128 �
512 � 128.
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Fig. 3. Calculated relaxation times T1, T2 and false EDM dv�E due to the magnetic
field distortion from a 3-mm-diameter, infinitely-long superconducting rod parallel
to the y-axis and placed near the cell. The rod is centered over the cell in the
x-direction, and the horizontal axis of the plots is the distance along the z-axis
between the inside of the cell wall and the center of the rod. The parameters are
diffusion constant D = 428 cm2/s (corresponding to a temperature of 450 mK [18]),
holding field B0 = 10 mG (applied parallel to the z-axis), and cell dimensions
Lx = 10.2 cm, Ly = 50 cm, Lz = 7.6 cm.

S.M. Clayton / Journal of Magnetic Resonance 211 (2011) 89–95 93
where a is the rod radius and (q,/) are polar coordinates in the zx
plane. While the cosine transforms of Bx, Bz derived from these
equations (appropriately translated to the desired location of the
superconducting rod) could perhaps be calculated analytically, here
the equations are used to generate a field map that is subsequently
run through the machinery to produce values for T1, T2, and dv�E.
Results are shown in Fig. 3, with physical parameters given in the
caption.
5. Conclusion

A method to calculate spin relaxation times and the linear-in-
electric-field frequency shift in the diffusion approximation was
presented. The technique is based on the observation that, for
particles diffusing in a rectangular cell, the correlation function of
position-dependent fields experienced by the particles is the
weighted sum over the product of spatial cosine-transform compo-
nents of the fields.1 As the formulation is intended for practical com-
1 During preparation of this manuscript, independent work was published based on
essentially the same observation for the T1, T2 calculation. These authors point out
that their result may be used as a probe for possible unknown spin interactions and
applied it to improve the limits on axion-like interactions with the cell walls [21].
putation in a rectangular cell, the result is for the complete three-
dimensional geometry. In the linear-in-electric-field frequency shift
calculation, the non-zero terms in the summation amount to one-
dimensional cosine transforms in the directions transverse to the
holding field; this is discussed further in Section A, where the dipole
impurity example is extended. Computation of the relaxation times
requires in general the full three-dimensional cosine transform.
Practical computation is done using fast discrete cosine transforms
of the field components.

In addition to evaluating the effect of magnetic impurities near
the cell as in the above examples, this method could be used in
magnet coil design optimization: given a field map, T1, T2, and
dxE can be quickly evaluated and combined into a figure of
merit.
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Appendix A. dxE due to a magnetic dipole impurity

In the expression for the linear-in-electric-field frequency shift,
Eq. (35), the full three-dimensional cosine transform is not re-
quired. Integrating over the zero-mode directions in Aðnx ;0;0Þfhxg
leaves a one-dimensional cosine transform in the remaining
direction,

Aðnx ;0;0Þfhxg ¼ Anx
1

LyLz

Z
A

hxdydz
	 


; ðA:1Þ

where A is the cross-sectional area of the cell in the yz-plane, and

Anxffg � 1
Lx

Z Lx

0
dx0f ðx0 � L=2Þ cos

npx0

L
: ðA:2Þ

It remains to calculate hx averaged over yz-plane cross sections
and similarly for hy, i.e., the total magnetic flux through these cross
sections divided by area. The analytic expression developed in this
appendix for a dipole impurity near the cell, illustrated in Fig. A.4,
is also applicable to the problem of finding the magnetic flux due to
a dipole through a piecewise linear pickup loop.

The magnetic flux through a surface S due to a dipole ~m at point
~rm is

Uð~rmÞ ¼
Z

S

~Bð~r �~rmÞ � ~da ¼
Z

S

~rr �~Að~r �~rmÞ

 �

� d~a

¼
I
@S

~Að~r �~rmÞ � d~l: ðA:3Þ

The magnetic vector potential at point~r due to a dipole ~m at point
~rm is

~Að~r �~rmÞ ¼
l0

4p
~m� ð~r �~rmÞ
j~r �~rmj3

: ðA:4Þ

In terms of the maximum surface field Bs of a spherical, uniformly
and permanently magnetized impurity of radius a, the dipole
strength is

j~mj ¼ 2pBsa3

l0
: ðA:5Þ

Consider a closed planar surface S bounded by N connected line
segments which have successive endponts ~ai, i = 0,. . .,N and
~aN ¼~a0. We will explicitly calculate the contribution DUi to the
line integral Eq. (A.3) from the boundary line segment extending
from ~ai to ~aiþ1, then sum over all segments to get the total flux
due to the dipole.

DUið~rmÞ ¼
Z ~aiþ1

~ai

~Að~r �~rmÞ � d~l ¼
l0

4p

Z ~aiþ1

~ai

~m� ð~r �~rmÞ
j~r �~rmj3

� d~l ðA:6Þ

The line from ~ai to ~aiþ1 can be parameterized in terms of a scalar
t 2 [ � 1,1],
m

BE

Fig. A.4. Diagram of the cell configuration, indicating the impurity dipole ~m and
one of the cell cross-sections over which the average field perturbation due to the
dipole is calculated.
~Li �~aiþ1 �~ai ðA:7Þ

~Ri �
1
2
ð~ai þ~aiþ1Þ �~rm ðA:8Þ

~l ¼ ~Ri þ
1
2

t~Li; ðA:9Þ

d~l ¼ 1
2

dt~Li: ðA:10Þ

Eq. (A.6) becomes

DUi ¼
l0

4p

Z ~aiþ1�~rm

~ai�~rm

~m�~l
l3 � d~l

¼ l0

4p

Z 1

�1
dt

~m� ð~Ri þ t~Li=2Þ �~Li=2

R2
i þ t~Ri �~Li=2þ t2~L2

i =4

 �3=2

¼ l0~m�~Ri �~Li

8pR3
i

Z 1

�1

dt

ð1þ t~Ri �~Li= 2R2
i


 �
þ t2L2

i = 4R2
i


 �
Þ3=2

:

ðA:11Þ

The solution to the integral ([22], Eq. 2.263.3),Z 1

�1

dt

ð1þ 2bt þ c2t2Þ3=2 ¼
bþ c2t

ðc2 � b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2bt þ c2t2

p �����
1

�1

¼ c2 � b

ðc2 � b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2bþ c2
p

þ c2 þ b

ðc2 � b2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2bþ c2
p ; ðA:12Þ

yields an algebraic expression for DUi, and the flux through the
loop is found by summation over all of its constituent line
segments.

The average hx and hy can now be evaluated at discrete points
along x and y, respectively, and fed into one-dimensional discrete
cosine transforms. Results using this method, rather than the full
three-dimensional cosine transform as required for T1 and T2, are
shown in Fig. A.5 for a dipole source scanned over the outer cell
wall.
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Fig. A.5. Results for the false-EDM effect (in e� cm) due to a dipole impurity
1.27 cm above the Lx � Ly � Lz = 10.2 � 50 � 7.6 cm3 cell, versus the position of the
dipole in the axes transverse to the holding field. For the upper plot, the dipole
source is aligned with the z-axis (holding field direction), has radius a = 150 lm and
maximum surface field Bs = 1 T. For the lower plot, the dipole source is aligned with
the x-axis, has a = 175 lm and Bs = 1 T.
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